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The results of the cell cluster calculation of the additive free energy constant C in the 
asymptotic high density form of the free energy 

where 7 is the ratio of the system area to its close-packed area, permit the prediction of 
a phase transition for hard squares between the free-volume solid state and the state 
determined by the Pade’ approximant to the virial series. Molecular dynamics calcula- 
tions show the free volume pressure to be correct over a considerable range of solid- 
state densities. The computer experiments also yield qualitative indications that there 
are two distinct phases in hard square systems. 

1. INTRODUCTION 

Hard core systems continue to be of interest in statistical mechanics not only 
because they may be considered to be a rough approximation to physically more 
realistic systems, but also because their simplicity makes possible a direct inter- 
comparison of the predictions and validity of various approaches to the calculation 
of thermodynamic properties of such systems from fundamental principles. In 
this paper we report a continuation of the study initiated earlier [I] concerning 
systems of parallel hard squares. 

First-order approximations to the properties of hard core systems at densities 
near the close-packed limit 7 = V/V,, + 1, where V is the volume of the system 
whose close-packed volume is VO , are readily obtainable from the free-volume 
theory. For example, Salsburg and Wood [2] showed that the eqaution of state of 
N v-dimensional rigid spheres at absolute temperature T has the asymptotic form 

(1) 
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where the free volume result is 

PV f-1 
$-l/v 

NkT FV = -- .1P - 1 

and kB is Boltzmann’s constant. 
On the other hand, the virial expansion 

PV - = 
NkT 1+$+S+... 

reformulated as a Pade’ approximant of the form 

PV 
( 

1 + a& + a&-” + *** -= 
NkT 1 + bl/r + b,/r2 + a*. 1 

(2) 

(3) 

(4) 

is known [3] to adequately predict the equation of state of hard disks and spheres 
throughout the fluid-phase region. 

Hoover [4] showed that the free volume form is exact for finite hard square 
systems with rigid walls over a density range of non-zero width near close-packing, 
and later [5] that, as T -+ 1, the Helmholtz free energy FN approaches the free 
volume limit in the thermodynamic limit: 

FN - - -V ln(+ - 1) + C + v ln(h/u), 
NkT 7-1 

N,Vm+ 
N/V COnSt 

(5) 

where C is a constant. In Section II we present a heuristic derivation of (5) and 
calculate the (3, 3) Pade approximant for the hard square virial series using the 
seven coefficients calculated by Hoover and de Rocco [6]. 

The cell-cluster technique [7] has been applied [l] to the calculation of the 
additive free energy constant C in Eq. (5). Knowledge of this constant permits the 
prediction of a possible solid-fluid phase transition as described in Section III. 
The results of molecular dynamics calculations are presented in Section IV. 

II. GENERAL THEORY 

A. High Density Equation of State 

We consider a system of N v-dimensional hard squares of side length u contained 
in a reduced volume T = V/V, , where V is the volume of the system whose close- 
packed volume is V,, = No”. Rotation of the squares is prohibited and their sides 
are understood to be either mutually parallel or perpendicular. 
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In the petit canonical ensemble, the Helmoltz free energy FN is given by 

FN = --kJln &(V, T) 

where & is the partition function 

vij is the Boltzmann factor which describes the interaction between squares i and j 
and h = (/z~/~TAT)~/~ is the mean thermal de Broglie wavelength. 

Near the close packed limit T -+ 1 the squares will become localized near the 
sites of a regular lattice, with nearest neighbor distance a, so that each square may 
be associated with a particular site. Neglecting vacancies and other lattice imper- 
fections, the vi%dimensional region of integration in (6) may be divided into N! 
equivalent nonoverlapping regions Ri , which differ only in the choice of the 
question which squares are to be associated with which nominal lattice sites. Hence 
(6) becomes 

QN = kYN s,-. jnPijdry (7) 

where R stands for any one of the N! regions described above. 
It is known [I] that the Boltzmann factors yii for squares have the form 

~‘ii = H&j - 4, (8) 

where [ij is a linear function of the components of the position vectors ri and rj 
and H is either 0 or 1 depending on the sign of the argument. For example, the 
requirement that i and j do not overlap along the x-axis yields 

yij = q(l xi - xj I - 4, (9) 

where 7 is the unit Heaviside function. It is then convenient to measure the 
coordinates ri of each particle relative to those of its nominal lattice site Rio: 

ri = Rio + pi . (10) 

In the high density limit under consideration, those Boltzmann factors that do not 
vanish then have the form 

yij = H(/-Q~ + a - u), 01) 

where the uij are now formed from components of pi and pj . Our previous example 
then becomes 

qij = &c - xi + a - u) 7)(X, - xi + a - u), (12) 
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where again Xi and Xj are measured relative to sites i and j, respectively. The 
natural substitution 

pi = (a - 0) ui (13) 

then yields 

QN = (fyN(Tl/’ - l)“!ZN ) (14) 

where Z, is the configuration integral 

We then have the result 

r;, x -zz 
Nk,T 

Y In - - v ln(Tl/” - 1) - r In Z, i 1 u N (16) 

and note that C = -(l/N) In Z, . 
Use of the thermodynamic relation P = -@F/aQ then gives the high density 

equation of state 
PV TVJ -=- 
NkT TV - 1 (17) 

which is just the free volume expression. 
In rigid disk and sphere systems, it has been shown [g] that in the corresponding 

expression 
PV - = 
NkT -gq + ccl + Did7 - 1) + Ed7 - II2 + **-, (18) 

the coefficients C,, , D,, ,... depend on nonvanishing density derivatives of the 
configuration integral. For squares, however, the pV relation (17) is independent 
of Z, , and indeed there are no high order corrections to the free energy. This result 
is in agreement with Hoover’s [5] proof that the free volume form is correct for 
squares and cubes in the thermodynamic limit as 7 -+ 1. 

B. Low Density Equation of State 

Hoover and de Rocco [6] have calculated the first seven hard square virial 
coefficients. A Pade analysis using these coefficients yields 

PV -= 1 - .98164/T + .32755/~~ - .02761 13/T3 

NkT 1 - 2.98164/T + 3.2908/T2 - 1.3310/T3 * (19) 

Figure I shows the equations of state obtained from Eqs. (17) and (19). 
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FIG. 1. The equations of state predicted by the various theories discussed in Set II. - free 
volume theory; ~ - (3, 3) Pad6 approximant; ~. - seven-term virial series, no 
Pad6 approximant ; x molecular dynamics results. 

III. POSSIBLE PHASE TRANSITION 

In an earlier publication [l] the modified cell-cluster technique [7] was used to 
calculate the additive free energy constant C in Eq. (5). Knowledge of this constant 
permits the prediction of a phase transition by equating the excess chemical 
potentials obtained by integrating under thepV curves for the high and low density 
equations of state. We assume 

(a) the Pade approximant for the fluid to be valid throughout the fluid 
phase, 

(b) the free-volume pressure to be exact throughout the entire solid region, 
and 

(c) the cell-cluster value C = -2 In 2 - .260422 to be the correct value. 

If we let 71 be the reduced volume of the solid phase at the transition pressure p, 
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and TV be the coexisting fluid phase volume, we then have the following condition 
for equilibrium between the two phases: 

NkTAG = F,(T,) - Fvirial(Tz) + Pl’~(7~ - ~2) + NkT = 0. (20) 

Here 

I;s(d - = 
NkT -2 ln(G - 1) + C 

and Fvirial is obtained from 

F viriadT) _ 
NkT - - J:, i%dvtr,aI - 9 dT, 

(21) 

(22) 

where the pressure in (22) is to be obtained from the virial expansion. 
Now if one integrates the virial expression for the p term by a term to find Fvirial 

and then computes the two possible Pade approximants ((2, 3) and (3,2)) to the 
resulting series, one finds that the results disagree by as much as 25 ‘A for 7 N 1.5. 
Hence, for the purposes of the calculations reported below, the integral in (22) 
was performed numerically, using Simpson’s rule with a step width of .OOOl. The 

FIG. 2. The excess chemical potential difference AG as a function of the solid-state density I~. 
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starting value used was r = 3.1., the last point at which the two above-mentioned 
Pade approximants agreed to five places. 

Figure 2 shows dG as a function of TV in the neighborhood of the transition 
region. The transition is found to occur at a pressure PV,,/NkT - 6.936 and 
coexisting volumes 1.212 < T ,< 1.297 or densities a bout 77 % of the close-packed 
density. 

The intuitive feeling that there should be a definite difference in squares between 
a highly ordered solid state and a random fluid state for squares is supported by 
the above result. However, the following objections might be raised regarding the 
transition: 

(1) The high density and virial pV curves are very close together in the 
transition region. It is not impossible that the two curves join smoothly, with at 
best a second or higher order phase transition. 

(2) The location of the transition region is extremely sensitive to the value 
of C and to the exact value of Fvirial. Hence, a difference of 005 in either value, 
which for both is probably an underestimate of the error, can change the transition 
pressure by as much as 5 %, with a similar effect on the transition densities. Hence, 
the phase transition cannot as yet be regarded as being definitely established. 
Preliminary molecular dynamics calculations do furnish some qualitative evidence 
for the existence of the transition, as we shall see in the next section. 

IV. MOLECULAR DYNAMICS RESULTS 

Table I shows the results of the molecular dynamics calculations. All calculations 
were carried out using periodic boundary conditions. Limitations on available 
computer time restricted the number of collisions to between 50 and 100 000 colli- 
sions for the 400 squares used throughout. A square lattice was used for the starting 
configuration in most instances, although in some cases the final configuration 
from a run was used as a starting configuration for a run at a lower density. 

The high density results (T ,( 1.4) show excellent agreement with the free volume 
theory predictions. The indication is that the transition is at a lower density than 
that determinal in the preceding section. However, the absence of a significant 
increase in the standard deviations for 1.285 < T < 1.5 suggests that the data in 
this density range represent an unequilibrated system. Considerably longer runs 
are required in order to preclude the possibility that the system was “locked” into 
a solid-like metastable state. 

Hoover [4] showed that the free volume theory was exact near the close-packed 
limit for finite systems of squares enclosed in rigid boundaries. The present results 
indicate that the free volume theory is valid also for systems with periodic boundary 



THE EQUATION OF STATE OF PARALLEL HARD SQUARES 401 

TABLE I 

PV/NlT 

+ Molecular dynamics Free volume Virial 

1.05 41.56 i .05 41.49 
1.1 21.45 2 .08 21.488 39.35 
1.115 18.81 -c .I2 18.87 28.63 
1.125 17.42 & .05 17.48 22.42 
1.15 14.76 i .04 14.82 18.40 
1.175 12.93 i .07 12.91 15.09 
1.2 1 I .45 1 .03 11.47 12.98 
1.285 8.55 2 .09 8.48 9.30 
1.3 8.18 i .06 8.13 8.91 
1.4 6.52 i .I 6.46 7.10 
1.5 5.61 + .09 5.45 6.00 
1.6 5.13 :i- .09 4.78 5.23 
1.7 4.57 :k .I1 4.29 4.66 
1.8 4.18 + .I1 3.93 4.20 
1.9 3.83 ‘- JO 3.64 3.85 
2.0 3.57 * .05 3.41 3.55 

conditions and over a considerable density range. Hoover’s theory predicts that 
400 squares enclosed in rigid walls will obey the free-volume law for T < 1.1025. 
Our results indicate the exchange of neighbor cells is a negligible effect over a 
considerably wider density range. 

Figure 3 shows a “snapshot” of a system of 400 squares at 7 = 1.2 after 
50,000 collisions. The system appears to have remained close to its original square 
lattice configuration, with the exception of a sliding motion in a few rows. Other 
high-density position plots show this to be the general case. The indication is that 
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Fro. 3. A snapshot of a high density, 7 = 1.2, system of 400 squares after 50 000 collisions. 
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the square lattice configuration is a stable configuration, as was postulated in the 
cell cluster calculations. 

The lower density results are not as satisfactory. Most of the runs were started 
from a square lattice configuration and it appears that the short runs did not allow 
the system to reach equilibrium from its initial solid state form. A typical run starts 
with a very low pressure which lasts for a time corresponding to three or four 
collisions per particle, after which time the pressure suddenly jumps to that 
predicted by the free volume theory. The pressure then slowly increases toward 
values slightly above the virial pressure, but, with the exception of the run at T = 2, 
the pressure did not level off for times long enough to be considered statistically 
meaningful. The values quoted for 1.5 < T .< 1.9 are the means for the entire run, 
leaving out the initial low pressure region. 

With the above mentioned exceptions, the pV values quoted in Table I are 
obtained by discarding the first 10 000 collisions and then taking the means of the 
pressures obtained from each 10 000 collisions thereafter. The errors are the 
standard deviations from these means. 

Partial “snaphots” of the low density configurations show little evidence of long- 
range order. 

These results may be considered to be qualitative evidence for the existence of 
a phase transition. However, the results also suggest that the transition may be 
difficult to locate in finite systems because of the tendency of a finite number of 
squares to become “locked” into a solid-like configuration. 
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